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Abstract
The interdisciplinary nature of conservation problems is increasingly being incorporated into
research, raising fundamental questions about the relative importance of the different types of
knowledge and data. Although there has been extensive research on the development ofmethods and
tools for conservation planning, especially spatial planning, comparatively little is known about the
relative importance of ecological versus non-ecological data for prioritization, or the likely return on
investment of incorporating better data.We demonstrate a simple approach for (1) quantifying the
sensitivity of spatial planning results to different ecological and non-ecological data layers, and (2)
estimating the potential gains in efficiency from incorporating additional data. Our case study involves
spatial planning for coastal squeeze, a process bywhich development blocks coastal ecosystems from
moving landward in response to sea-level rise.We show that incorporating spatial data on landowners’
likelihood of selling had little effect on identifying relative priorities but drastically changed the
outlook forwhether conservation goals could be achieved. Better data on the costs of conservation
actions had the greatest potential to improve the efficiency of spatial planning, in some cases
generatingmore than an order ofmagnitude greater cost savings compared to ecological data. Our
framework could be applied to other systems to guide the development of spatial planning and to
identify general rules of thumb for the importance of alternative data sources for conservation
problems in different socio-ecological contexts.

Introduction

Conservation science is increasingly interdisciplinary,
which introduces challenges associated with integrat-
ing knowledge and data from across a wide range of
disciplines. Given ubiquitous limits on time and
monetary resources, identifying which types of knowl-
edge or data are most important for analyses meant to
support conservation has wide relevance. This ques-
tion is likely to be foundational for determining
investment in data collection, forming interdisciplin-
ary teams, and developing graduate education pro-
grams, among other activities in conservation science
and education.

Much of conservation science and practice uses sys-
tematic planning, a framework for making the best use
of the limited resources available for conservation
(Margules and Pressey 2000, McCarthy et al 2012).
Approaches to spatial systematic planning, in part-
icular, are well established and the tools for implement-
ing them are becoming increasingly sophisticated (e.g.
Marxan; Watts et al 2009), but less is known about
which types of knowledge or data are most important
for ensuring that these tools lead to cost-effective deci-
sion-making. Ecological data are the foundation of
most spatial planning because they are often necessary
for measuring progress toward conservation goals and
more familiar to conservation planners than social or
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economic data (Cowling 2014). Accordingly, much of
the research on better understanding the sensitivity of
spatial planning to the underlying data, and potential
trade-offs associated with obtaining better data, is
focused ondifferent types of ecological data (e.g. Brooks
et al 2004, Rondinini et al2006,Grantham et al2008).

Non-ecological data, and in particular economic
costs and other social data, such as willingness to parti-
cipate in conservation, can be an important comp-
onent of efficient planning (e.g. Zhu et al 2015). It is
not yet common practice, however, to incorporate a
wide range of non-ecological data sources into plan-
ning efforts (Naidoo et al 2006, Naidoo and Ricketts
2006, Guerrero et al 2010, Knight et al 2010, Kujala
et al 2018). One potential cause of this lag is that allo-
cating greater effort toward non-ecological data sour-
ces is associated with trade-offs, including the
potential to shift focus away from the biology of con-
servation (Arponen et al 2010), the cost of data collec-
tion, delaying action while waiting for better data
(Grantham et al 2009), and the expertise needed to
obtain and interpret additional data types. Incorporat-
ing multiple types of data, each of which has its own
uncertainty, can also generate greater uncertainty in
the results of the planning process. The potential costs
of increased uncertainty include the need for more
sophisticated, and potentially less accessible, planning
tools that are capable of incorporating uncertainty,
and less interpretable results, especially for non-
specialist stakeholders.

There is currently little general guidance for navi-
gating the costs and benefits of incorporating different
types of data into conservation planning (Kujala et al
2018). To address this need, we first specify a frame-
work for generating evidence that can be used to infer
the relative importance of different data sources and
quantify the influence of data layer accuracy, resolu-
tion and uncertainty. Our approach synthesizes a
range of related approaches from planning research
into three components designed to help planners navi-
gate the trade-offs associated with choosing appro-
priate data types: (1) quantifying the sensitivity of
conservation planning results to the types of data that
are incorporated, (2) quantifying how much uncer-
tainty is added from each data layer to visualize often
overlooked trade-offs between greater uncertainty and
greater efficiency, and (3) estimating the efficiency
gains produced by each planning solution.

We used our approach to address two common
spatial planning goals: estimating and ranking the
conservation value of planning units and identifying a
minimum set of planning units to meet conservation
goals for the least cost. We determined the relative
importance of the data types needed for these goals by
quantifying the consequences of using coarser data
layers that required less effort to obtain but are more
typical of data used in spatial planning. We integrated
three types of data—ecological, monetary cost, and
human behavior—using complex datasets that do not

typically exist for conservation planning in real-world
contexts. For each of these three types, we compared
the results obtained using these richer datasets to
results obtained using more widely used data, includ-
ing remote sensing of habitat layers, rapid count sur-
veys, and county-level cost data. Previous studies have
quantified the sensitivity of planning results to ecolo-
gical and socio-economic data, either using widely
available sources (Bode et al 2008, Carwardine et al
2010) or simulations (Kujala et al 2018), quantified the
importance of human behavior data (Knight et al
2010), or characterized the uncertainty associated with
integrating social data (Lechner et al 2014). Here, we
use the richness of data for our system to extend these
approaches by quantifying how sensitivity, uncer-
tainty, and efficiency are influenced by relative invest-
ments into cost, human behavior, and ecological data,
which have rarely been examined simultaneously.

We illustrate our framework using a conservation
planning problem for a system that has a wealth of
ecological data: the protection of tidal marshes and an
endemic tidal marsh bird in Long Island Sound (LIS),
USA. Approximately 5% of the US human population
lives within 80 km of LIS, and the tidal marshes in this
region lie within the core of the range of an endan-
gered species, the saltmarsh sparrow (Ammospiza cau-
dacutus, Wiest et al 2016). A primary conservation
strategy for addressing coastal squeeze in this region,
and the one considered here, is to protect sufficient
land to allow marshes to migrate landward and miti-
gate losses from sea-level rise.

Methods

Data sources, conservation planning approach, and
planning units
Our spatial planning objective was to identify planning
units for the least cost that could provide (1)migration
corridors for marshes and (2) the greatest protection
to current saltmarsh sparrow nesting habitat. We
defined costs according to the conservation action that
is the focus of our planning (see Carwardine et al
2008), which is the cost of purchasing land in the
coastal zone. We measured conservation value in
relation to two targets: the projected extent of tidal
marsh in 2100 assuming no additional barriers to
marsh migration are constructed (Hoover 2009), and
the current extent of saltmarsh sparrow nesting
occurrence (Meiman and Elphick 2012). We also
considered two lesser effort data sources that are
potential proxies for saltmarsh sparrow nesting: salt-
marsh sparrow abundance, estimated from count
surveys (Wiest et al 2016), and the current extent of
tidal marsh, estimated from remote sensing
(Hoover 2009). We considered three goals that span
the minimum and maximum extent likely to be set by
practitioners: 33%, 66%, and 95% of each target’s
extent (or population when using abundance
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estimates as a proxy for nesting extent), allowing us to
quantify the influence on our results of setting
conservative versus ambitious goals.

We estimated the costs of properties within the
migration zone using a Bayesian regression analysis of
randomly selected properties from town assessors’
databases (see SI is available online at stacks.iop.org/
ERL/14/124081/mmedia). Unlike many proxies for
costs, our statistical analysis of cost data resulted in a
layer that meets important criteria for informing con-
servation planning as it captures the appropriate spa-
tial variation (Armsworth 2014), which might not
covary with conservation targets (Murdoch et al 2007).
We compared this layer to a freely available, but less
precise, proxy for land costs: county-scale, median
values for agricultural land (US Department of Agri-
culture 2012). This cost proxy has been used to
develop cost estimates for large-scale planning based
on return on investment for the USA (Withey et al
2012). We estimated the proportion of landowners in
each town who would be likely to sell their properties
to a conservation organization for fair market value
using data on behavioral intentions from a survey of
>3000 landowners in the migration zone (Field et al
2017a). We quantified spatial variation in the propor-
tion of landowners who would be likely to sell using a
Bayesian logistic regression model with spatial ran-
dom effects by town. We multiplied the proportion of
landowners in each town who would be likely to sell
their land by the extent of the migration zone to esti-
mate how much of the migration zone is likely avail-
able for purchase, propagating confidence bounds of
the estimation uncertainty of the statistical model (see
SI for details on the statistical model and uncertainty
propagation).

We defined planning units as cells (approximately
23 km2) in the hexagonal grid from the US Environ-
mental Protection Agency’s Environmental Monitor-
ing and Assessment Program (https://archive.epa.
gov/emap/archive-emap/web/html/). The planning
units in this grid are large enough to encompass the
larger marsh complexes in our study area and have
previously been used to design sampling for

estimating the abundance of saltmarsh sparrows
(Wiest et al 2016). For each planning unit, we used the
data listed above to calculate the ‘fraction-of-the-
spares’ index (FOS), which estimates conservation
value for prioritization or identifying a minimum set
of planning units thatmeets goals for a set of conserva-
tion targets (Phillips et al 2010). The index uses data on
the amount of each target in each planning unit to
assign it a value between zero and one, with a value of
one indicating that the planning unit is necessary for
meeting conservation goals. We used the FOS because
it estimates conservation value in relation to multiple
targets, performs well compared to other conservation
indices, and is straightforward to calculate and recal-
culate as necessary, facilitating the propagation of
uncertainty of the underlying data layers. Because of
its simplicity and intuitive scale, the FOS can also be
easily communicated to a wide range of stakeholders.
We divided the FOS index by the cost of land to obtain
a benefit/cost ratio (Phillips et al 2010), which we used
as our measure of conservation value. This general
measure of return on investment, in which the ‘invest-
ment’ is the amount of the conservation target being
protected, is an intuitive approach to planning that
encourages efficiency (Murdoch et al 2007). We recal-
culated the FOS index for each planning unit 10 000
times, each time using independent draws from the
uncertainty distributions for each data layer. The
resulting confidence bounds represent the entire range
of uncertainty contributed by the data layers that were
used to calculate the index.

Sensitivity
Our ‘best scenario’ incorporated the best available
data: projections of marsh migration, modeled salt-
marsh sparrow nesting occurrence, land cost data
from within the migration zone, and spatial data on
likelihood of selling (table 1). We estimated conserva-
tion value for each planning unit for five alternative
scenarios in which we either excluded a data layer
(likelihood of selling) or replaced it with a reduced
effort proxy (land cost, nest occurrence; seefigure 1 for
the scenarios). For each reduced effort scenario, we

Table 1.The types and sources for data layers used for spatial planning.

Index Type of data Data layer Source

1 Ecological target:marshmigration Projections of tidalmarshmigration Hoover (2009)
2 Ecological target: saltmarsh sparrow

nesting habitat

Saltmarsh sparrownesting occurrence Meiman and Elphick (2012)

3 Ecological target: saltmarsh sparrow

nesting habitat

Saltmarsh sparrow abundance Wiest et al (2016)

4 Ecological target: saltmarsh sparrow

nesting habitat

Extent of current tidalmarsh Hoover (2009)

5 Economic cost The cost of land purchase adjacent to tidalmarsh Bayesian regression using tax asses-

sors data

6 Economic cost Median cost of land purchase in coastal counties USDepartment of Agriculture

7 Human behavior Behavioral intentions of coastal landownerswith

respect to land purchase

Analysis of data fromField et al

(2017a)
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compared the conservation value of planning units to
that obtained using the best scenario to quantify how
sensitive these values were to the excluded data layer.
First, we compared reduced effort scenarios to the best
scenario using Spearman’s rank correlations to esti-
mate the similarity of the rankings produced by the
FOS.We then calculated the number of planning units
shared by each reduced effort scenario and the best
scenario using a 10-planning unit moving window
across the ranking from lowest to highest conservation
priorities. This analysis gave a measure of similarity
across the entire ranking and made it possible to
determine whether, for example, there was high
agreement between scenarios for the highest ranked
planning units, but low agreement for the lowest
ranked planning units. For example, a previous

sensitivity analysis of cost data found low sensitivity to
uncertainty for the highest and lowest ranked planning
units (Carwardine et al 2010). We propagated the
uncertainty of the FOS index for both analyses by
calculating correlations for each of 10 000 indepen-
dent draws of the index’s uncertainty distribution.
Together, these analyses quantify how successfully the
reduced effort scenarios can approximate the ranking
of conservation value produced by the best scenario.

Contribution to uncertainty
The uncertainty within data layers, which can arise
from estimation uncertainty (Wilson et al 2005,
Rondinini et al 2006) or stochastic biological processes
(Game et al 2008), is rarely incorporated into spatial
planning (Lechner et al 2014). Uncertainty in con-
servation is ubiquitous and often substantial, however,
and methods that explicitly aim to make the best
decisions under uncertainty can lead to better out-
comes (Game et al 2008). Quantifying how much
uncertainty is added from each data layer can enable
one to visualize the trade-offs between greater uncer-
tainty and greater efficiency. To achieve this for each
reduced effort scenario, we quantified the proportion
of the uncertainty that is contributed by the excluded
data layer as:

where N is the number of planning units, i, and CV is
the coefficient of variation.

Return on investment throughmore efficient
networks
Spatial planning with data that are more precise,
accurate, or directly related to the target of interest
presumably results in more efficient solutions for
identifying the minimum set of land purchases

Figure 1.Comparisons between the scenario using the best available data and five scenarios that use reduced effort data. For all plots,
lighter to darker colors correspond to the 33%, 66%, and 95% conservation goals, respectively. (A)Blue bars show the 95% confidence
bounds for the correlations between the conservation value rankings produced by the best available data and the corresponding
reduced effort scenarios listed on the left; white dots showmeans. Bars closer to zero have less correlationwith the best available data,
suggesting that obtaining better data has greater potential to improve planning efficiency. For each reduced effort scenario, the
proportion of the uncertainty in estimating conservation value that is contributed by the excluded data layer is shown by grayscale bars
—i.e. the lengths of the bars showby howmuch obtaining better datawould increase the uncertainty bounds. (B)The cost savings, or
return on investment (ROI), in terms of solution efficiency, of using data on nesting occurrence, high-resolution land cost, and
likelihood of selling compared to the associated reduced effort scenarios listed on the left. (C)Theminimumnumber of planning
units needed tomeet conservation goals for each scenario listed on the left. Solutions that did notmeet conservation goals, despite
incorporating all planning units in our planning region, are shown in red.

å -
=N

CV reduced effort scenario PU CV best available data PU
1

1 ,
i

N
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required to meet a conservation goal. Given that
conservation benefits are fixed, the difference in cost
between solutions identified by the best available data
versus reduced effort data is an intuitive andpractically
relevant index of the return on investment of obtain-
ing better data.We calculated thismeasure by identify-
ing, for each scenario, the minimum set of planning
units thatmeets conservation targets for the least cost.

We identified minimum sets by sequentially
choosing the planning unit with the highest conserva-
tion value until both conservation goals were met,
recalculating the FOS after each step. We then esti-
mated potential gains in efficiency from using the best
available data compared to each reduced effort sce-
nario as follows:

where BEST is the best scenario, RES is the reduced
effort scenario, MinSetBEST is the minimum set
identified using the best scenario, MinSetRES is the
minimum set identified by the reduced effort scenario,
and TargetsBEST is the total extent of the targets, as
estimated by the best scenario, that is containedwithin
MinSetRES or MinSet .BEST

Results

We found a trivially small cost savings when incorpor-
ating data on a landowner’s likelihood of selling
(figure 1(b)). Incorporating landowner likelihood of
selling added the most estimation uncertainty (a mean
of 22% of uncertainty in the conservation value
estimates) and ignoring these data did not substantially
affect rankings of conservation value or the efficiency
of the minimum set of planning units needed to meet
goals (figures 1, 2, S1). When likelihood of selling was
ignored, which assumes that all land is available for
protection, the minimum number of planning units
needed to meet conservation goals varied from 18 for
the least ambitious goal to 54 for the most ambitious
(figure 1(c)). In contrast, for every scenario that
includes likelihood of selling, not even protecting all
land with likely sellers in every planning unit would be
enough to meet goals (the bottom four scenarios in
figure 1(c), shown as red bars).

Incorporating high-resolution land cost data had
the largest influence on conservation value rankings
(figure 1(a)), but also increased the variance of the
uncertainty bounds by 11% (figure 1(a)). Ignoring
costs altogether resulted in poor approximations of
ranked conservation values (figure 1(a)). Using the
median value of agricultural land as a proxy produced
ranked conservation values that were better than those
when ignoring costs, but rankings were still only about
70%–75% similar to those produced by the best sce-
nario (figure 1(a)). The agricultural land cost data ten-
ded to rank planning units similarly to the better cost
data for the highest value planning units, but dissim-
ilarly for the lower value sites (figure 2). Ignoring land
costs altogether resulted in dissimilar rankings across

the entire range of conservation values (figure 2). Add-
ing high-resolution land cost data also produced the
greatest cost savings among the alternative scenarios:
as much as $13 million/100 ha compared to using
agricultural value and $10 million/100 ha compared
to ignoring costs for the 95% goal (figure 2). Com-
pared to ignoring costs altogether, using agricultural
value improved conservation rankings, but produced
less efficient minimum sets for the 66% and 95% con-
servation goals (figure 1(b)).

Using remotely-sensed habitat layers or individual
abundance as proxies for nesting occurrence pro-
duced rankings that were only approximately 75%
similar to those from the best scenario. The planning
units identified as having the highest conservation
value by these ecological data proxies were not the
same as those produced by the best scenario, although
all ecological datasets identified similar planning units
as being of lowest conservation value (figure 2). The
use of nesting occurrence data produced a greater cost
savings ($6 million/100 ha) than high-resolution land
cost data ($5 million/100 ha) for the 33% goal, but
otherwise the savings from better ecological data were
small compared to those from better cost data. The
substantial savings fromusing nest occurrence data for
the least ambitious conservation goal suggests that
data on bird abundance alone do a poor job of identi-
fying the highest priorities. This result is supported by

= -Cost savings of BEST Cost using RES Cost using BESTha ha ,/ /

=Cost using BEST
Total cost of MinSet

Targets contained within MinSet
ha ,BEST

BEST BEST

/

=Cost using RES
Total cost of MinSet

Targets contained within MinSet
ha ,RES

BEST RES

/
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low similarity between this scenario and the best sce-
nario for the highest value planning units (figure 2).

Discussion

The cost savings for better land cost data were more
than an order of magnitude greater than those for
ecological data for the more ambitious conservation
goals. This discrepancy suggests that if there are
limited resources for data collection or if threats are so
immediate that delaying conservation action could
substantially worsen outcomes, as is true for our
planning region (Field et al 2017b), obtaining better

land cost data is likely to be the smarter investment.
Incorporating landowner likelihoodof selling (figure S3)
drastically changed the outlook for whether it is possible
tomeet conservation goals, highlightinghow the types of
analyses here can also inform the likely effectiveness of
conservation efforts.

Applying the framework presented here to other
systems would facilitate the accumulation of evidence
that could be used to find generalities about which
types of data are likely to bemost important for spatial
planning in different social and ecological contexts.
While the results of our case study were driven in part
by region-specific factors, the key results are likely to
apply to many regions and contexts. For example, we
found that because land in coastal areas is costly, even
small improvements in efficiency have the potential to
lead to significant cost savings. Although exact com-
parisons are hard to make, each of our more detailed
datasets was generated (including fieldwork and analy-
sis) for̃US$ 200 000–300 000 and also produced sub-
stantial information gains toward other research
questions beyond spatial planning. In contrast, esti-
mated cost savings for many of the scenarios were in
the millions of dollars, suggesting substantial return
on investment.

Our results highlight the potential for large effi-
ciency gains when using high quality cost data. This
result has been found in previous studies that quanti-
fied sensitivity or importance of costs relative to biodi-
versity data (Carwardine et al 2010, Kujala et al 2018).
Here, we show that the gains of investing in cost data
also surpass data on likelihood of selling, which are
rarely incorporated into planning, and a set of proxies
for ecological data. The emerging generality of this
pattern across different research approaches suggests
that better cost data for conservation planning are
likely to be a safe investment. We estimated costs by
combining intensive data collection and a spatial
regression model, an approach that is similar to hedo-
nic pricing (e.g. Tyrväinen 1997). Other approaches to
estimating costs might also be appropriate, including
those that are similar (e.g. Carwardine et al 2010) and
quite different (e.g. Withey et al 2012) from our
method. Consequently, an emphasis on predicting
spatial variation in conservation costs and covariation
with targets (e.g. Ferraro 2003), akin to recent
improvements in estimating species distributions (e.g.
Guisan and Thuiller 2005, Zurell et al 2016), could
greatly improve the effectiveness of spatial conserva-
tion planning (Armsworth 2014, Kujala et al 2018). In
our example, the large savings provided by better cost
data arose in part because the spatial resolution of the
proxy for cost was low compared to the spatial resolu-
tion of the ecological proxies. We expect that the dis-
parity in precision and accuracy between the best cost
and ecological layers available for conservation plan-
ning will continue. The development of spatial cost
layers typically does not receive the same degree of
attention as the development of ecological layers

Figure 2.The number of planning units, in a 10-unit window,
that co-occur inmatchedwindows for the rankings produced
by the scenario using the best available data and each reduced
effort scenario (shown for the 66%goal; results were not
sensitive to how ambitious goals were). Solid lines show the
mean number of shared planning units for the 10-unit
movingwindow, and dotted lines show 95%confidence
bounds. The highest ranked planning unit ismarkedwith an
O if it is the same for the reduced effort scenario and the best
available data scenario, andmarkedwith anXotherwise.
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(Kujala et al 2018), which canmake use of increasingly
high-resolution predictors (Pradervand et al 2014).
Our results use a measure of return on investment, in
terms of the costs of our conservation action of inter-
est, purchasing land. The realized costs of conserva-
tion, however, often include opportunity (Adams et al
2010) and transaction costs (Ban and Klein 2009), as
well as less tangible costs (e.g. Arponen et al 2010) such
as the need for additional expertise and challenges
associated with communicating with non-specialists.
As understanding of these potential hidden costs
improves, our general framework could be used as the
basis for studies that further quantify the importance
of overlooked costs in analyses of conservation
problems.

For the analyses presented here, we compared
reduced effort data against the best available data,
which themselves are imperfect. Importantly, though,
the data layers that we considered in the best scenario
had robust uncertainty estimates, which we propa-
gated by estimating conservation value across the
full posterior distributions. By doing this, we also
addressed the inherently uncertain nature of cost data
(Carwardine et al 2010), which is a common source
of criticism in conservation planning (Arponen et al
2010). While a key advance of our study was quantify-
ing the uncertainty added by more complex data and
analyses, further research could build on our results by
focusing specifically on how complex datasets influ-
ence decision-making under uncertainty (e.g. Game
et al 2008) or the consequences of using planning ana-
lyses and algorithms that do not easily propagate
uncertainty (Lechner et al 2014).

We used the FOS index for our case study because
it is well suited for both site prioritization and identify-
ingminimum set solutions, and encourages a focus on
return on investment, which is a powerful framework
for determining conservation priorities (Naidoo and
Ricketts 2006, Withey et al 2012). Our approach is not
dependent on the spatial planning method, however.
For example, our approach for estimating the cost sav-
ings of data layers could easily be replicated using pop-
ular tools such asMarxan (Watts et al 2009).

The generalizable aspects of our approach are also
not limited to spatial planning problems. For example,
we quantified how different aspects of data sources,
including their accuracy, resolution, and uncertainty
can influence the resulting decision-making. This
more detailed approach is different from, but com-
plementary to, recent approaches that address ques-
tions about the importance of different types of
data using more generalized systems (Davis et al 2019)
or mathematical derivations and simulations (Kujala
et al 2018). Our approach simulates many of the real-
world problems applied researchers and practitioners
might face when conducting systems modeling or
decision support analyses, especially as more methods
incorporate uncertainty. Another key aspect of our
approach was that we compared results using the best

available data to results using typical datasets, or those
that would be available in contexts for which analyses
and planning must move forward using the best avail-
able data. These comparisons facilitate decision-mak-
ing about the marginal benefit of additional data,
which is often likely to be the quantity of interest, as
few conservation problems are addressedwith no data.
Finally, looking at the return on investment of differ-
ent types of knowledge in monetary terms has sig-
nificant advantages for making sense of a complex set
of options and facilitating efficient decision-making.
For example, this framework allows direct compar-
isons of the cost of collecting better data to the savings,
from network efficiency, of using better data. We
believe that these features of our analysis will apply to
most conservation problems, which are often inter-
disciplinary, urgent, and must be addressed with less
than perfect information.
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